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Encouraged by the observation that thermolysls of alkyl azldoformates 

yields perhydro-1,3-oxazln-Z-ones as well as 1,3-oxazolld=n-Z-ones' we have 

explored the thermolysis of 3B-lanostanyl azidoformate (I.) as a method for 

functlonalislng the C-4 methyl groups of 4,4-drmethyl-36-01 trlterpenold 

2 The azidoformate 1 , m.p 135-136' (prepared by standard procedures fror 

lanostan-3B-ol via the chloroformate2, m.p. 129-131') was thermolysed in 

methylene chloride solution at 125' overnlght. The reactlon products were 

separated by chromatography on a column of alumina (Woelm neutral, GIII) from 

which was eluted first lanostan-3-one (ca.L5%), - and then compounds A (ca.30%) _- 
and B (~.35%). Although both compounds were homogeneous by t.1.c. analysis 
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only A was obtalned crystalline, m-p. 284-285', B gelled from solutions ant 

upon drylnq was obtained as a colourless transparent lacquer. 

2 Both A and B had composltlon C31H53N02 . The InltLal assignment of 

structures was made on the basis of the following spectroscopic evidence: A 

had 'max (KBr) 3450, 1780 and 1755 cm-', and a p.m.r. spectrum revealed eight 

C-methyl groups, consistent with the oxazolidlnone 2; whereas B had v max (KBr) 
-1 3450 and 1720 cm , and only seven C-methyl groups In Its p.m.r. spectrum, 

consLst.ent with the structure 3. 

Confirmation of these structural assignments, and the ldentlficatlon of 

the methyl group functxonalxsed In formzng 3 was provided by analysis of their 

c.m.r. spectra. The carbon-13 chemical shifts 3 for the compounds 1, 2 and 3 

and for lanostan-3B-ol are given in the Table. Assignment of the resonances to 

lndlvldual carbon atoms was made using chemical shift addltlvlty relatlonshlps 4 , 

gated decoupllng5 and modulated off-resonance methods 6 as well as spectral 

comparison with structurally related tetracycllc trlterpenolds 7,8 . The effects 

of sterlc compression on the axial 4B-methyl group C-30 characterlses the high 

field shift (14 ppm) of this carbon compared with the equatorial 4a-methyl C-29 

(27.9 ppm) In lanostan-38-01, I, 2 and related compounds 7,8 . This observation 

IS the single most Important feature establlshlng the methyl group functlonal- 

lsation since In z the 4@methyl carbon shifts to high field (12.4 ppm), while 

a Hnew* methylene resonance attributable to C-29 (C-4a) 1s observed at 54.1 ppm 

The trans-stereochemlstry at the Junction of the A and the heterocycllc rings 
a in 3 1s also Illustrated by the shift to high field at C-4 (2.6 ppm) . The 

oxazolldlnone structure 2 LS confirmed part+cularly In the downfIeld a- and !3- 

substltuent shifts observed at C-2 and C-l, C-3, respectively (see Table). 

We conclude that 38-azldoformate thermolysis functlonallses the 4a-methyl 

group of the lanostane system, and thus provides a useful complement to the 

recently described nltroxlde photolysis procedure 9 whereby the 48-methyl 

groups of 4,4-dlmethyl stekols may be functionallsed. More recently we have 

successfully applied this functlonallsatlon procedure to a series of analogous 

decalln derlvatlves. 
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Carbon-13 Chemical Shifts In Selected Lanostanol Derlvatxves 

Carbon Lanostan-3B-01 1 
posltlon 

C-l 37.22 36.76 

c-2 

c-3 

c-4 

c-5 

C-6 

C-l 

C-8 
c-9 

c-10 

c-11 
c-12 

c-13 
c-14 

C-15 
C-16 

c-17 

C-18 
c-19 

c-20 
c-21 

c-22 

C-23 
C-24 
C-25 

27.37 
78.35 

36.79 

54.51 
19.go 

28.67 

38.24 

48.17 
38.57 
21*41 

33.2* 
44.Eo 
47.47 

31.83 

27.70 

50 4g 
14.21a 
15.48a 

35.82 
18.So 

36-25 
23.8, 

39.16 
27.70 

23.63 

85.74 
36.65 

54.56 
19.go 

28.48 
38.22 

48.06 
37.7g 
21.20 

33.26 

44.So 
47.41 

31.7, 
27.73 

50*50 
14.21a 
16.10a 

35.82 
18.4* 

36.25 

23.87 
39.13 

27.73 

2 3 

41.45 36.52 
52.00 23.06 

91.13 81.78 

36.71 34.04 

55.32 52.76 
20.26 19.77 

28.32 28.1g 

37.95 38.16 

48.04 48.01 
39.Q 36.73 

20.52 21.47 

33.15 33.26 

44,ao 44.6g 

47.41 47.33 

31*6g 31.58 

27.f3 27.5g 

50.46 

L5.70a 
16.0,a 

35.7g 

18.45 
36.1g 

23.84 
39 ll 

27.73 

35.7g 

18.45 

36.1g 

23.84 
39*11 

27.70 

C-26 

C-27 
c-28 

c-29 
c-30 

c=o 

a Cannot dlstlngulsh between these resonances. 
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