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Encouraged by the observation that thermolysis of alkyl azidoformates
yields perhydro-1,3-oxazin-2-ones as well as l,3—oxazolld1n—2—onesl we have
explored the thermolysis of 3f-lanostanyl azidoformate ({) as a method for
functionalising the C~4 methyl groups of 4,4-dimethyl-3B-ol triterpenoid

2

systems

3

The azidoformate 12, m.p 135-136° (prepared by standard procedures fror

lanostan-38-0l wvia the chloroformatez, m.p. 129—1310) was thermolysed in
methylene chloride sclution at 125° overnight. The reaction products were
separated by chromatography on a column of alumina (Woelm neutral, GIII) from
which was eluted first lanostan-3-one (ca.l5%), and then compounds A (ca.30%)

and B (ca.35%). Although both compounds were homogeneous by t.l.c. analysis
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only A was obtained crystalline, m.p. 284—2850, B gelled from sclutions anc
upon drying was obtained as a colourless transparent lacquer.

Both A and B had composition C, H_,NO 2. The initial assignment of

31753772
structures was made on the basis of the following spectroscopic evidence: A
had Vmax (KBr) 3450, 1780 and 1755 cm—l, and a p.m.r. spectrum revealed eight
C-methyl groups, consistent with the oxazolidinone 2; whereas B had Vinax (¥Br)

3450 and 1720 cm-l, and only seven C-methyl groups in 1ts p.m.r. spectrum,
consistent with the structure 3.

Confirmation of these structural assignments, and the i1dentification of
the methyl group functionalised in forming 3 was provided by analysis of their

c.m.r. spectra. The carbon-13 chemical sh1fts3

for the compounds }:, % and §
and for lanostan-38-cl are given in the Table. Assignment of the resonances to
individual carbon atoms was made using chemical shift additivaty relat10nsh1ps4,
gated decoupllng5 and modulated off-resonance methods6 as well as spectral

7’8. The effects

comparison with structurally related tetracyclic triterpenoids
of steric compression on the axial 48-methyl group C-30 characterises the high
field shaft (14 ppm) of this carbon compared with the equatorial Aa-methyl C-29
(27.9 ppm) 1n lanostan-3f-ol, %, g and related compounds7'8. This obhservation
1s the single most important feature establishing the methyl group functional-
isation since in 3 the 4f-methyl carbon shifts to high field (12.4 ppm), while
a "new" methylene ryesonance attributable to C-29 (C~4a) 1s observed at 54.1 ppm
The trans-stereochemistry at the junction of the 5 and the heterocyclic rings
in § 1s also 1llustrated by the shift to high field at C-4 (2.6 ppm)a. The
oxazolidinone structure 3 1s confirmed particularly in the downfield o- and f-
substituent shifts observed at C-2 and C-1, C-3, respectively ({see Table).

We conclude that 3R-azidoformate thermolysls functionalises the 4a-methyl
group of the lanostane system, and thus provides a useful complement to the
recently described nitroxide photolysis procedure9 whereby the 4f-methyl
groups of 4,4-dimethyl steiols may be functionalised. More recently we have

successfully applied this functionalisation procedure to a series of analogous

decalin deraivataives.
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carbon-13 Chemical shifts in Selected Lanostanol Derivatives

Carbon Lanostan-38-o0l % 2 3
position - -
c-1 37.2, 36.7, a1.4, 36.5,
c-2 27.3, 23.6, 52.0, 23.0,
c-3 78.3, 85.7, 91.14 81.74
c-4 36.7, 36.6 36.7; 34.0,
c-5 54.5, 54.5 55.3, 52.7,
c-6 19.9, 19.9, 20.2 19.7,
c-7 28.6, 28.44 28.3, 28.14
c-8 38.2, 38.2, 37.9, 38.1,
c-9 48.1, 48.0, 48.0, 48.0,
c-10 38.5, 37.7, 39.1 36.75
c-11 21.4; 21.2, 20.5, 21.4,
c-12 33.24 33.2, 33.1, 33.2
c-13 44.8, 44.8, 44.8, 44.6,
c-14 47.4, 47.4 47.4, 47.34
c-15 31.8, 31.7, 31.64 31.54
c-16 27.7, 27.7, 27.7, 27.5,
c-17 50 44 50.5,, 50.4 50.4,
c-18 14.2,% 14.21% 15.7,% 13.9.°
c-19 15.48a 16.1,% 16.0.2 14.16%
c-20 35.8, 35.8, 35.7, 35.7,
c-21 18.5, 18.4, 18.4, 18.4,
c-22 36.2, 36.2, 36.1, 36.14
c-23 23.8, 23.8, 23.8, 23.8,
c-24 39.1, 39.1, 39 1 39.1,
c-25 27.7, 27.7, 27.7, 27.7,
c-26 22.6, 22.6, 22.56, 22.6,
c-27 22.3, 22.3, 22.3, 22.3,
c-28 16.1,% 16.4,% 16.3.% 16.0,°
c-29 27.9, 27.8, 27.7, 54.1,
c-30 13.7, 13.7, 14.2 12.4,
c=0 - 155.7, 159.8, 153.2,

a
Cannot distinguish between these resonances.
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