FUNCTIONALISATION OF THE 40-METHYL GROUP

OF LANOSTANOL VIA AZIDOFORMATE THERMOLYSIS

Alan J Jones* National NMR Centre, Australian National University, Canberra, ACT 2600, Australia

and

Paul Francis Alewood, Michael Benn* and John Wong, Chemistry Department, The University, Calgary, Alberta T2N 1N4, Canada.

(Received in USA 11 December 1975; received in UK for publication 5 April 1976) (Received

Encouraged by the observation that thermolysis of alkyl azidoformates yields perhydro-1,3-oxazin-2-ones as well as 1,3-oxazolidin-2-ones¹ we have explored the thermolysis of 3 β -lanostanyl azidoformate (1) as a method for functionalising the C-4 methyl groups of 4,4-dimethyl-3 β -ol triterpenoid

The azidoformate l_{2}^{2} , m.p $135-136^{\circ}$ (prepared by standard procedures from lanostan-3 β -ol via the chloroformate², m.p. $129-131^{\circ}$) was thermolysed in methylene chloride solution at 125° overnight. The reaction products were separated by chromatography on a column of alumina (Woelm neutral, GIII) from which was eluted first lanostan-3-one (<u>ca</u>.15%), and then compounds <u>A</u> (<u>ca</u>.30%) and <u>B</u> (<u>ca</u>.35%). Although both compounds were homogeneous by t.l.c. analysis

only A was obtained crystalline, m.p. $284-285^{\circ}$, B gelled from solutions and upon drying was obtained as a colourless transparent lacquer.

Both <u>A</u> and <u>B</u> had composition $C_{31}H_{53}NO_2^{-2}$. The initial assignment of structures was made on the basis of the following spectroscopic evidence: <u>A</u> had v_{max} (KBr) 3450, 1780 and 1755 cm⁻¹, and a p.m.r. spectrum revealed eight C-methyl groups, consistent with the oxazolidinone <u>2</u>; whereas <u>B</u> had v_{max} (KBr) 3450 and 1720 cm⁻¹, and only seven C-methyl groups in its p.m.r. spectrum, consistent with the structure 3.

Confirmation of these structural assignments, and the identification of the methyl group functionalised in forming 3 was provided by analysis of their c.m.r. spectra. The carbon-13 chemical shifts³ for the compounds 1, 2 and 3 and for lanostan-3 β -ol are given in the Table. Assignment of the resonances to individual carbon atoms was made using chemical shift additivity relationships $\frac{4}{2}$ gated decoupling⁵ and modulated off-resonance methods⁶ as well as spectral comparison with structurally related tetracyclic triterpenoids 7,8. The effects of steric compression on the axial 4β -methyl group C-30 characterises the high field shift (14 ppm) of this carbon compared with the equatorial 40-methyl C-29 (27.9 ppm) in lanostan-38-ol, 1, 2 and related compounds 7,8. This observation is the single most important feature establishing the methyl group functionalisation since in 3 the 4 β -methyl carbon shifts to high field (12.4 ppm), while a "new" methylene resonance attributable to C-29 (C-4a) is observed at 54.1 ppm The trans-stereochemistry at the junction of the A and the heterocyclic rings in 3 is also illustrated by the shift to high field at C-4 (2.6 ppm)^{θ}. The oxazolidinone structure 2 is confirmed particularly in the downfield α - and β substituent shifts observed at C-2 and C-1, C-3, respectively (see Table).

We conclude that 3β -azidoformate thermolysis functionalises the 4α -methyl group of the lanostane system, and thus provides a useful complement to the recently described nitroxide photolysis procedure⁹ whereby the 4β -methyl groups of 4,4-dimethyl sterols may be functionalised. More recently we have successfully applied this functionalisation procedure to a series of analogous decalin derivatives.

Carbon position	Lanostan-38-ol	1	2~	3~
C-1	37.22	36.76	41.45	36.52
C-2	27.37	23.63	52.00	23.06
C-3	78.35	85.7	91.13	81.78
C-4	36.7	36.6	36.7	34.04
C-5	54.5	54.5	55.32	52.7 ₆
C-6	19.90	19.90	20.26	19.77
C-7	28.67	28.48	28.3 ₂	28.1 ₈
C-8	38.24	38.22	37.9 ₅	^{38.1} 6
C-9	48.1.,	48.06	48.04	48.0
C-10	38.57	37.79	39.1	36.73
C-11	21.4	21.20	20.52	21.47
C-12	33.28	33.26	33.1 ₅	33.2 ₆
C-13	44.8	44.80	44.80	44.69
C-14	47.47	47.41	47.41	47.33
C-15	31.83	31.77	31.6 ₉	31.5 ₈
C-16	27.70	27.73	27.7 ₃	27.5 ₉
C-17	50 4 ₉	50.5 ₀	50.46	^{50.4} 4
C-18	14.2^{a}_{1}	14.21 ^a	15.70	^{13.9} 7
C-19	15.4 ^{-a}	16.1 ₀ a	16.07 ⁴	14.16 ^a
C-20	35.82	35.82	35.79	³⁵ .7 ₉
C-21	18.50	18.48	18.45	18.4 ₅
C-22	36.25	36.2 ₅	36.1 ₉	36.1 ₉
C-23	23.87	23.87	23.84	23.84
C-24	39.1 ₆	39.1 ₃	39 1 ₁	^{39.1} 1
C-25	27.7 ₀	27.73	27.7 ₃	27.7 ₀
C-26	22.63	22.60	22.63	22.60
C-27	22.3	22.3	22.33	22.3
C-28	16.1 ^{°a}	16.4^{a}_{0}	16.3 ⁷ a	16.0 ⁷ a
C-29	27.94	27.83	27.73	54.1
C-30	13.76	13.78	14.2 ₈	12.4
C=0	-	155.70	159.80	153.24

Carbon-13 Chemical Shifts in Selected Lanostanol Derivatives

^a Cannot distinguish between these resonances.

REFERENCES

- P.F Alewood, M. Benn and R. Reinfried, <u>Canad. J. Chem.</u>, <u>52</u>, 4083 (1974), and references therein.
- The molecular formulae of all new compounds reported were established by high resolution mass measurements.
- 3. ¹³C spectra were determined (for 0.1M solutions in deuteriochloroform with tetramethylsilane as internal reference) in the Fourier mode using a Bruker HFX-270 spectrometer operating at 67.89 MHz.
- See for example, J B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York (1972).
- 5. O.A. Gansow and W. Schittenhelm, J. Amer. Chem. Soc., 93, 4294 (1971)
- E. Wenkert, A.O. Clouse, D.W. Cochran and D Doddrell, <u>J. Amer. Chem. Soc</u> 91, 6879 (1969); A.J. Jones and M.H. Benn, Can. J. Chem., 51, 486 (1973).
- 7. S.A. Knight, <u>Tetrahedron Letts.</u>, <u>83</u> (1973); <u>idem.</u>, <u>Org. Mag. Res.</u>, <u>6</u> 603 (1974).
- 8. (a) G. Lukacs, F. Khuong-Huu, C.R. Bennett, B.L. Buckwalter and E. Wenkert, <u>Tetrahedron Letts</u>., 3515 (1972); (b) F. Khuong-Huu, M. Sangaré, V.M. Chari, A. Bekaert, M. Devys, M. Barbier and G. Lukacs, <u>ibid</u>., 1787 (1975), (c) M. Angaré, F. Khuong-Huu, D. Herlem, A Milliet, B. Septe, G. Berenger and G. Lukacs, ibid., 1791 (1975)
- J.A. Nelson, S. Chou and T.A. Spencer, <u>J. Amer. Chem. Soc.</u>, <u>97</u>, 648 (1975).